Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://logika.nt-rt.ru/ || lgk@nt-rt.ru

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ЛОГИКА 8941

Назначение средства измерений

Теплосчетчики предназначены для измерения тепловой энергии, расхода, объема, массы, температуры и давления воды, транспортируемой по трубопроводам систем тепло- и водоснабжения на объектах ЖКХ и промышленных предприятий.

Описание средства измерений

Принцип действия теплосчетчиков состоит в измерении параметров теплоносителя, транспортируемого по трубопроводам, с последующим расчетом тепловой энергии и количества теплоносителя. Выходные электрические сигналы от датчиков параметров теплоносителя (расход, объем, температура, давление), установленных в трубопроводах, поступают в тепловычислитель, где осуществляется их преобразование в значения соответствующих физических величин и производится вычисление тепловой энергии и количества теплоносителя.

В составе теплосчетчиков могут использоваться в любом сочетании преобразователи расхода, температуры и давления, приведенные в таблице 1 (в скобках указан регистрационный номер преобразователя в Госреестре СИ). В качестве комплексного компонента теплосчетчика как измерительной системы используется тепловычислитель СПТ941 модификаций 941.10 или 941.20 (регистрационные номера в Госреестре СИ соответственно 29824-05 и 29824-14). Конкретный состав теплосчетчика определяется заказом и приводится в паспорте.

Таблица 1 - Типы первичных измерительных преобразователей в составе теплосчетчиков				
Преобразователи расхода	Преобразователи температуры	Преобразователи давления		
ПРЭМ (17858-11)				
ВЗЛЕТ ЭР (Лайт М) (52856-13)				
МастерФлоу (31001-12)				
ЭМИР-ПРАМЕР-550 (27104-08)				
PM-5 (20699-11)				
Питерфлоу РС (46814-11)				
Карат-551 (54265-13)				
ВСЭ (32075-11)		Метран-150 (32854-13)		
СУР-97 (16860-07)	TЭM-110 (40593-09)	Метран-75 (48186-11)		
Карат (44424-10)	КТПТР-01 (46156-10)	Метран-55 (18375-08)		
Карат-520 (44424-12)	КТПТР-05 (39145-08)	СДВ (28313-11)		
РУС-1 (24105-11)	КТСП-Н (39145-08)	DMP (56795-14)		
US800 (21142-11)	TЭM-100 (40592-09)	Корунд (47336-11)		
SONO 1500 CT (35209-09)	ТПТ-1 (46155-10)	МИДА-13П (17636-06)		
Ultraheat T (51439-12)	ТПТ-15 (39144-08)	АИР-10 (1654-14)		
ВПС (19650-10)	ТСП-Н (38878-12)	АИР-20/М2 (46375-11)		
ВЭПС (14646-05)		MBS 4003 (56237-14)		
Метран-300ПР (16098-09)				
Метран-320 (24318-03)				
TЭM (24357-08)				
BCT (51794-12)				
BCTH (55115-13)				
M (48242-11)				
W (48422-11)				

Рисунок 1 - Тепловычислитель СПТ941

Рисунок 2 - Преобразователи расхода. Общий вид

Рисунок 3 - Преобразователи температуры. Общий вид

Рисунок 4 - Преобразователи давления. Общий вид

Программное обеспечение

Программное обеспечение (ПО) теплосчетчиков встроенное, неперезагружаемое при эксплуатации, имеющее метрологически значимую часть. ПО резидентно размещается в тепловычислителе и реализует вычислительные, диагностические и интерфейсные функции согласно эксплуатационной документации. Уровень защиты ПО от непреднамеренных и преднамеренных изменений "высокий" по Р 50.2.077-2014. Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

- man					
Идентификационный	Цифровой идентификатор	Теплосчетчики			
номер (номер версии)	(контрольная сумма)	с тепловычислителем			
2.0.x.x.xx	2669	941.10			
1.0.x.x.xx	27A5	941.20			

Метрологические и технические характеристики

Диапазон измерений объемного расхода: от $2.5 \cdot 10^{-3}$ до $1.4 \cdot 10^{5}$ м³/ч

Диапазон измерений массового расхода: от $2,5 \cdot 10^{-3}$ до $1,4 \cdot 10^{5}$ т/ч

Диапазон измерений давления: от 0 до 2,5 МПа

Диапазон измерений температуры: от минус 50 до плюс 150 °C

Диапазон измерений объема: от 10^{-4} до $9 \cdot 10^{8}$ м³ Диапазон измерений массы: от 10^{-4} до $9 \cdot 10^{8}$ т

Диапазон измерений тепловой энергии: от $3 \cdot 10^{-6}$ до $9 \cdot 10^{8}$ ГДж

Пределы допускаемой относительной погрешности измерения тепловой энергии:

- $\pm [2 + 12/(t1 \alpha \cdot t2) + 0.01 \cdot D_G]$ % для теплосчетчиков класса 1;
- $\pm [3 + 12/(t1 \alpha \cdot t2) + 0.02 \cdot D_G]$ % для теплосчетчиков класса 2.

Пределы допускаемой относительной погрешности измерения расхода, объема и массы:

- $\pm (1,1+0,01\cdot D_G)$ % для теплосчетчиков класса 1;
- $\pm (2,1 + 0,02 \cdot D_G)$ % для теплосчетчиков класса 2

Пределы допускаемой абсолютной погрешности при измерении температуры:

 $\pm (0.25 + 0.002 \cdot t)$ °C - для теплосчетчиков классов 1 и 2.

Пределы допускаемой приведенной погрешности при измерении давления:

 \pm 1 % - для теплосчетчиков классов 1 и 2

Пределы допускаемой относительной погрешности при измерении времени:

 ± 0.01 % - для теплосчетчиков классов 1 и 2

Примечание.

- α коэффициент водоразбора; $\alpha = M2/M1$; M1 и M2 масса воды, прошедшей по подающему и обратному трубопроводам; $0 \pm \alpha \pm 1$.
- D_G динамический диапазон измерений расхода; D_G = G_B /G, G_B верхний предел измерений преобразователя расхода, G текущее значение расхода.

Условия эксплуатации:

- температура окружающего воздуха: от 5 до 50 °C;
- относительная влажность: 80 % при 35 °C;
- атмосферное давление: от 84 до 106,7 кПа

Электропитание: (220 + 22/-33) B, (50 ± 1) Γ ц (непосредственно или через сетевые адаптеры).

Габаритные размеры и масса: приведены в описаниях типа составных частей.

Средняя наработка на отказ: 35000 ч

Средний срок службы: 12 лет

Знак утверждения типа

наносится на первой странице эксплуатационных документов типографским способом.

Комплектность средства измерений

Теплосчетчик ЛОГИКА 8941 в составе:

- тепловычислитель СПТ941	_1 шт.
- преобразователи расхода	
- преобразователи температуры	13 шт.
- преобразователи давления	03 шт.
- руководство по эксплуатации с методикой поверки (РАЖГ.421431.035 РЭ)	_1 шт.
- паспорт (РАЖГ.421431.035 ПС)	1 шт.
- эксплуатационная документация составных частей	
(экземпляров для каждой составной части)	1 шт.

Поверка

осуществляется по документу РАЖГ.421431.035 РЭ Раздел 6 "Теплосчетчики ЛОГИКА 8941. Руководство по эксплуатации", утвержденному ФГУП "ВНИИМС" 12.08.2014 г. Основные средства поверки:

- проливная установка с относительной погрешностью не более $\pm 0.3 \%$;
- стенд СКС6 (абсолютная погрешность формирования сигналов тока \pm 0,003 мA, сигналов сопротивления \pm 0,015 Ом, относительная погрешность формирования сигналов частоты \pm 0,003 %);
- термометры сопротивления эталонные модификация ПТСВ-4 (абсолютная погрешность ± 0.02 °C);
- термостат жидкостный мод. 7012 (абсолютная погрешность ± 0.05 °C);
- термостат жидкостный мод. 7312 (абсолютная погрешность ± 0.05 °C);
- манометр грузопоршневой МП-2,5 класса точности 0,05.

_

¹ Нормирующее значение - верхний предел измерений.

Сведения о методиках (методах) измерений

Методы измерений приведены в РАЖГ.421431.035 РЭ "Теплосчетчики ЛОГИКА 8941. Руководство по эксплуатации".

Нормативные и технические документы, устанавливающие требования к теплосчетчикам ЛОГИКА 8941

- 1. МИ 2412-97. Водяные системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя.
- 2. ГОСТ Р 51649-2000. Теплосчетчики для водяных систем теплоснабжения. Общие технические условия.
- 3. ГОСТ Р ЕН 1434-1-2011. Теплосчетчики. Часть 1. Общие требования.
- 4. ТУ 4218-090-23041473-2014. Теплосчетчики ЛОГИКА 8941. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянек (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноарс (861)203-40-90 Красноорск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://logika.nt-rt.ru/ || lgk@nt-rt.ru